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In the kinematic dynamo problem a fluid motion is specified arbitrarily and the 
induction equation is solved for non-decaying magnetic fields; it forms part of the 
larger magnetohydrodynamic (MHD) dynamo problem in which the fluid flow is 
buoyancy-driven. Although somewhat restrictive, the kinematic problem is important 
for two reasons: first, it suffers from numerical difficulties that are holding up progress 
on the MHD problem; secondly, for the geodynamo, it is capable of reproducing 
details of the observable magnetic field. It is more efficient to study these two aspects 
for the kinematic dynamo than for the full MHD dynamo. We explore solutions 
for a family of fluid flows in a sphere, first studied by Kumar & Roberts (1975), 
that is heuristically representative of convection in a rotating sphere such as the 
Earth’s core. We guard against numerical difficulties by comparing our results with 
well-understood solutions from the axisymmetric (ma) limit of Braginskii (19644 
and with solutions of the adjoint problem, which must yield identical eigenvalues 
in an adequate numerical treatment. Previous work has found a range of steady 
dipolar solutions; here we extend these results and find solutions of other symmetries, 
notably oscillatory and quadrupolar fields. The surface magnetic fields, important 
for comparison with observations, have magnetic flux concentrated by downwelling 
flow. Roberts (1972) found that meridional circulation promoted stationary solutions 
of the rco-equations, preferred solutions being oscillatory when no such circulation 
was present. We find analogous results for the full three-dimensional problem, but 
note that in the latter case the ‘effective’ meridional circulation arising from the non- 
axisymmetric convection (a concept made precise in the asymptotic limit of Braginskii 
1964~) must be considered. Thus stationary solutions are obtained even in the absence 
of ‘true’ meridional circulation, and the time-dependence can be controlled by the 
strength of the convection as well as by the meridional circulation. The preference for 
fields of dipole or quadrupole parity is largely controlled by the sign of the velocity: a 
reversal of velocity from a case favouring a dipole will favour quadrupole parity, and 
vice versa. For the comparison problem of Proctor (1977b) this symmetry is exact; for 
the physical problem the boundary conditions make a difference. The boundary effect 
is first removed by surrounding the dynamo region with a thick layer of quiescent 
conducting fluid, and then studied numerically by progressively reducing the thickness 
of this layer to zero. The insulating boundary contributes to the difficulty of obtaining 
dynamo action, and to the numerical difficulties encountered. The effect of an inner 
boundary on dynamo action is also considered, but found to be slight. 
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1. Introduction 
The Earth‘s magnetic field is generated by inductive action of fluid motion in the 

liquid iron core. The fluid flow is driven by buoyancy forces, probably associated 
with variations in composition of the liquid, and it regenerates magnetic field by 
doing work against the magnetic Lorentz force. This geodynamo process is similar 
to that acting to generate magnetic fields in the Sun and stars, except that much less 
energy is available to drive convection and the electric currents decay more rapidly 
because iron is a relatively poor conductor of electricity. In fact the geodynamo’s 
energy budget is rather tight; thermodynamic arguments show the internal field 
cannot exceed a few tens of milliTeslas and must be restricted to large length scales 
(Gubbins, Masters & Jacobs 1979). This has two important benefits for modelling. 
First, electromagnetic shielding by the Earth’s solid mantle and magnetized crust 
mean that short-wavelength features are in any case unobservable. Secondly, the 
accurate simulation of short-wavelength features would require a model of numerical 
resolution greater than is presently feasible. 

The full dynamo problem is formidable and has therefore usually been studied 
in its constituent parts; a thorough review is given by Roberts & Gubbins (1987) 
and Roberts (1987). Much recent work has concentrated on the convection problem, 
either without magnetic field or with an imposed magnetic field, or on the simplified 
‘mean-field’ am dynamo problem (discussed below). In this paper we concentrate on 
the now relatively neglected kinematic dynamo problem, in which the fluid flow is 
prescribed and one searches for instabilities in the form of exponentially growing 
magnetic fields (dynamo instabilities). The problem is somewhat artificial because the 
flow is arbitrary and not governed by an equation of motion. Although it is linear in 
the magnetic field, and so mathematically straightforward, severe numerical difficulties 
have previously been encountered in its study; solutions adequately represented by 
the finite numerical resolutions attainable have proven difficult to obtain. These are 
probably the main reasons for its neglect. We present three separate reasons why its 
study is now critical: 

(a )  We can explore the dynamo action of fluid flows that resemble those generated 
by convection. This is much simpler than attempting to solve the full dynamo problem, 
and we can hope to gain insight into what features of convective flow are essential 
for efficient dynamo action before conducting a full nonlinear calculation. 

(b)  The numerical difficulties encountered appear to have been associated only 
with the induction equation, so that by isolating them in the kinematic problem we 
hope to gain insight into how to circumvent them. 

(c )  If we are to be guided by observation in explaining in the geodynamo, our 
model must be capable of producing a magnetic field to compare with that observed 
at the surface of the core. Only a three-dimensional (3D) model can do this, and 
the extensive 3D calculations required for such a scheme are only practical for the 
simpler kinematic problem. 

In the current paper we address the first and second of these points; the use of 
kinematic calculations in understanding the observed geodynamo has been considered 
in Hutcheson & Gubbins (1994) and Gubbins & Sarson (1994). 

The kinematic dynamo problem has enjoyed a long and rather undistinguished his- 
tory. The first results were negative, with anti-dynamo theorems such as those of Cowl- 
ing (see e.g. Hide & Palmer 1982), suggesting the whole concept of a homogeneous 
dynamo might be untenable. The first numerical calculations were over-ambitious 
and resulted in solutions that, although initially convincing, were later shown to 
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be numerical artefacts (Bullard & Gellman 1954; Lilley 1970). The first successful 
dynamos were highly artificial (Backus 1958; Herzenberg & Lowes 1957), but numer- 
ical problems were eventually overcome (G. 0. Roberts, reported in Roberts 1971; 
Gubbins 1972, 1973; Pekeris, Accad & Shkoller 1973) and Kumar & Roberts (1975) 
demonstrated convincing numerical convergence of magnetic fields generated by 
flows with the qualitative features of rotating convection. In this paper we take their 
study further. 

The flows of Kumar & Roberts (1975, referred to herein as KR) contained three 
ingredients: differential rotation, known to be present in the Sun and to be a common 
feature of convection in rotating systems ; columnar convection, of the type normally 
associated with rapidly rotating convective systems, essential for dynamo action ; and 
meridional circulation (purely axisymmetric overturning) which Roberts (1972) found 
promoted the production of stationary magnetic fields. As well as investigating the 
importance for dynamo action of each of these components, we introduce another 
parameter to allow variation in the nature of the boundary employed, since some 
earlier work has shown that an external region of stationary fluid can, under certain 
circumstances, facilitate dynamo action (Bullard & Gubbins 1977; Hutcheson & 
Gubbins 1994). 

KR were guided by the earlier work of Braginskii (1964a, b) ,  who developed an 
asymptotic theory for flows dominated by differential rotation. The relevant points 
of this theory are reviewed in $2; it is particularly suited to the geodynamo, which is 
dominantly axially dipolar in form, because it leads to simple axisymmetric equations 
appropriate to a nearly axisymmetric magnetic field. The essential effects of the non- 
axisymmetric fluid flow and magnetic field appear asymptotically as an induced e.m.f. 
parallel to the axisymmetric part of the magnetic field, and an ‘effective’ meridional 
circulation. The first of these features is the well-known a-effect, found in the later 
work of Steenbeck, Krause & Radler (1966) (see also Roberts & Stix 1971; Krause & 
Radler 1980) on turbulent dynamos, which has been successfully applied to the solar 
dynamo; the second effect is specific to Braginsky’s theory, and has been relatively 
neglected. The simplified a-effect equations have been the subject of many studies, 
both kinematic and dynamic. The most relevant study for this paper is that of Roberts 
(1972), who explored the link between meridional circulation and the time-dependence 
and spatial symmetry of the magnetic field solution. 

We view the kinematic dynamo as a stability problem. The fluid flow is specified 
and the resulting linear induction equation solved for magnetic field solutions of 
exponential time-dependence. The flow is described by a small number of parameters, 
one of which is the magnetic Reynolds number, which we treat as our control 
parameter in our search for marginally stable solutions. We seek the instability 
boundary in this space of parameters by direct numerical calculation. This numerical 
approach is the only one available for a problem that contains the complicated 
elements of spherical geometry and departures from axial symmetry, but it has 
limitations. If we find a satisfactorily converged solution at marginal stability we 
may claim to have demonstrated dynamo action, but from negative results we may 
only claim the absence of dynamo action below some upper limit on the magnetic 
Reynolds number set by the numerical procedure. 

The KR fluid flow is invariant under two important spatial operations, reflection in 
the equatorial plane and rotation by an angle 7c about the polar axis; these invariances 
lead to four possible symmetries of magnetic field solutions. Gubbins & Zhang (1993) 
show that decoupling of these symmetries occurs also in the full dynamo problem. We 
refer to that work for a full discussion, but discuss the symmetry properties relevant 
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to our specific investigation in 92.2. Previous work has concentrated on magnetic field 
solutions containing the axial dipole term because these are the most geophysically 
interesting, but the physically realizable solution is simply the most unstable; therefore 
in the following work we consider all possible solutions. 

2. Formulation of the problem 
2.1. The kinematic dynamo problem of Kumar & Roberts 

The induction equation is non-dimensionalized with velocity and length scales a, 9, 
and diffusion time $P2/q, where q is the magnetic diffusivity, to give 

( 2 . 1 ~ )  

where u is the fluid velocity, B the magnetic field, and R, = % 9 / q  is the magnetic 
Reynolds number. We consider only incompressible flows so that both u and B are 
solenoidal. 

The value of u is prescribed, leaving (2.la) linear in B, and we seek solutions of the 
form Bo(r, 13,q5) exp I t  with Re 1 = 0. (The subscript '0' will subsequently be dropped 
for convenience.) The corresponding value of R,, if such a solution exists, is called 
the critical magnetic Reynolds number, &. The kinematic dynamo problem consists 
of finding % and the corresponding B, and frequency w = I m i ,  for a chosen u. 

We consider a conducting sphere V ,  given by r < 1 in spherical coordinates ( r ,  6,4), 
surrounded by an infinite insulating volume c. The magnetic A h  field in V ,  B(r ,6 ,4) ,  
must satisfy (2.la), whilst the field in the current-free region V ,  B(r,  6, 4), must satisfy 

V X B = O ,  r > 1 ,  (2.16) 

aB 
dt 

2 B  = - - R,V x (u x B )  - V2B = 0, 

ii = o ( ~ - ~ ) ,  r -+ m. (2 .k)  
Continuity of B requires 

Expanding B in toroidal and poloidal vector spherical harmonics, 

,.. 
B = B ,  r = l .  (2.14 

B = T + S = V x [ T(r ,  6,q5) e,] + V x V x [ S ( r ,  6,q5) e,] ,  ( 2 . 2 ~ )  

(2.2b) 
c o 1  

T(r,  0,4) = T;""(r)P;Z(cos 6) cos m$ + T;"S(r)P;"(cos 6) sin m$, 
I=1 m=O 

a 3 1  

S(r ,  6,4) = S;"'(r)P;l(cos 6) cos m$ + S;"(r)P;"(cos 6 )  sin mq5, (2.2c) 
I=1 m=O 

where P;" are associated Legendre functions (see e.g. Abramowitz & Stegun 1965) and 
e, the unit radial vector, allows the condition of continuity with the external potential 
field to be expressed via matching conditions on the toroidal and poloidal scalars, 

dSy 1 
dr r 

T;" = 0, - + - S , ? ' = O ,  r = l .  

We also require regularity at the origin, 

a condition also imposed on the prescribed velocity. 
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We follow KR in investigating the class of flows defined by 

(2-5) 2c 2F u = €(If: + €13; + e2S2  + e3s2 , 
where the e, are variable parameters and the t ,  s are toroidal and poloidal vector 
spherical harmonics in the decomposition of u, 

u = t + s = V x [ t ( r ,  O,#) e,] + V x V x [ s(r, 8,#) e,], (2.6) 

in terms of a spherical harmonic expansion analogous to that in (2.2~).  The radial 
functions adopted by KR, defined for 0 < r < 1, are 

ty(r) = r2(1 - r2 ) ,  (2 .7~)  

s;(r) = r6( 1 - r2)3,  (2.7b) 
s p ( r )  = r4(1 - r 2 ) 2  cos ( p r ) ,  (2.7~) 
sT(r)  = r4(1 - r2l2 sin ( p r ) ;  (2.7d) 

p is here an integer multiple of n, and determines the radial complexity (number of 
cells) of the convective motion. 

This flow represents a combination of differential rotation (ty), axisymmetric merid- 
ional circulation (s:), and non-azimuthally mirror-symmetric convection (si). These 
combine to allow dinamo action according to the Braginskii (1964~) theory discussed 
in $2.4. 

Apart from the detailed forms of radial function employed, this flow incorporates 
flows studied by other authors as special cases. The first study, by Bullard & Gellman 
(1954), had el = €2 = 0. Lilley (1970) considered flows with el = 0, as did Hutcheson 
(1990) and Nakajima & Kono (1991). Dudley & James (1989) and Hutcheson & 
Gubbins (1994) have reported calculations based on the full KR flow. Axisymmetric 
flows obtained by setting €2 = €3 = 0 can also generate magnetic fields of quite 
different symmetry, for different radial functions (Dudley & James 1989). 

2.2. Symmetries of the solutions 
Symmetry properties of the full dynamo problem are discussed by Gubbins & Zhang 
(1993). Following their notation, we denote reflection in the equatorial plane, 8 + x-8, 
by E ,  and rotation by an angle 2n/M about the polar axis, # + # + 2x/M, by PM. If 
these operations are accompanied by a change of sign, they are denoted by E A  and 
P i  respectively; if not, by E S  and PL. (The superscript A denotes anti-symmetric, S, 
symmetric.) Symmetry of field is then defined via invariance under these operations. 

The KR velocity can be seen to be invariant under both the E S  and P: operations. 
This results in four separate symmetries of magnetic fields, each invariant under one 
of the possible combinations of EA,  E S ,  P t ,  Pf (see table 1). A full stability analysis 
must consider each of these solution types, as the physically realized mode will be 
the most unstable (that with smallest R;); only EAP; solutions have been reported 
to date. For the linear kinematic dynamo these solutions are independent and may 
be superimposed. The nonlinear MHD dynamo allows only the ESP: and EAP: 
solutions in isolation; the nonlinear terms couple the P i  solutions with the P:. 

A further symmetry of the velocity is invariance under translation in time, which 
admits periodic solutions; this is consistent, of course, with the exponential time- 
dependence required from the linear nature of the problem. 

Further symmetries in the flow reduce the parameter space to be explored, as noted 
by Dudley & James (1989). Rotation by x/2 about the polar axis, # --+ # + x/2, 
is equivalent to the mapping ( € 2  + -e2,e3 + -q); inversion in the plane 4 = 0, 
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E P2 Toroiddl Poloidal m Nomenclature 
E A  P;' E-meven l - m  odd rneven Axial dipole 
E A  P/ 1 - m even E - m odd rn odd Equatorial quadrupole 
Es  P? 1 - m odd 1 - m even m even Axial quadrupole 
ES P? 1 - rn odd 1 - m even in odd Equatorial dipole 

TABLE 1. Magnetic field symmetries of the four solutions, and their decomposition in spherical 
harmonics (degree I ,  order m), in an expansion of the magnetic field into toroidal and poloidal 
parts. The 'equatorial quadrupole' label is used rather loosely to denote the symmetry whose leading 
poloidal spherical harmonic term is I = 2, m = 1. 

4 4 -4, is equivalent to (€0 -+ - ~ , q  4 -62).  As the problem must be invariant 
under these operations, these two parameter mappings, plus their compound mapping 
and the identity mapping, form a group of four parameter mappings under which the 
solution is invariant: 

(€0, €1 , €2, €3 (€0, €1 2 -627 -f3 (-€Ot €1, -e2 > f 3  (-60, €1 , € 2 ,  -63 1- (2.8) 

We may therefore without loss of generality fix c0 = 1, hold e2 > 0, €3 > 0, and 
investigate only the full range of R, and €1. 

2.3. Tdze adjoint dynamo problem 

Following Gibson & Roberts (1966) and Kono & Roberts (1991) we define the adjoint 
problem, @Bt, to satisfy 

L { A r  9 B  - A - gtBt}dV = 0, 

where A ,  At are the vector potentials. 

be expressed, for the geometry considered above, as 
Kono & Roberts (1991) showed that the adjoint problem defined in this way can 

R,V x (-u x B ~ ) + v  x v x BT =o, (2.10a) 
dBt 9 tBt  = __ - 
at 

V X V X B ' = O ,  r > l ,  (2. lob) 

v x B' = ~ ( r - ~ ) ,  r -+ 03, (2.10c) 

V X B ' = V X B ' ,  r = i .  (2.10d) 
Expanding Bt in terms of poloidal and toroidal spherical harmonics, the matching 
condition (2.104 gives 

(2.1 1) 

Therefore the equation for the adjoint field Bt in the sphere V is identical to the 
e uation for a physical field except for a change in sense of the velocity, u + -u. 

of adjoint toroidal harmonics corresponding to that of physical poloidal harmonics, 
and vice versa (cf. equation (2.3)). 

B 4 must, however, satisfy quite different boundary conditions, the condition required 
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If the boundary were to play only a secondary role in the problem, we might 
expect the physical system with velocity -u to possess a solution similar to that 
of the adjoint system, and thus of similar eigenvalue to the solution obtained for 
velocity u. Such a situation, where velocities of opposite sense are capable of exciting 
dynamos with almost equal ease, has long been observed in the ao-dynamo literature 
(e.g. Roberts 1972). In trying to explain this result, Proctor (1977~1, b) considered a 
'comparison' system, identical to the dynamo system but for the artificially prescribed 
boundary conditions 

Proctor established that this system possesses identical eigenvalues for the two veloc- 
ities u and -u, the adjoint of this system differing from the original only in terms 
of such a velocity mapping, the boundary conditions in both cases being homoge- 
neous. Furthermore, he could show that an E A  solution for velocity u was related 
to an E S  solution for velocity -u, and vice versa, which is the case approximately 
observed for am-dynamos. Although the comparison system allows this result to be 
established, the artificial boundary conditions imposed mean that its physical rel- 
evance is not immediately obvious. The deviation from the physical problem can, 
however, be investigated by considering a system where the fluid region is surrounded 
by a quiescent shell of identical conductivity, constituting the region 1 < r < d. 
For d >> 1 it is obvious that the influence of the artificial boundary condition is 
reduced, and the system approximates a true dynamo surrounded by a quiescent 
conducting layer. 

Such a dynamo system has previously been considered by Hutcheson & Gub- 
bins (1994), who showed that, in the stationary case, the matching condition for B 
gives 

T = 0 ,  S = O ,  r = l .  (2.12) 

dSy 1 
dr dr r 

+-S;^=O, r = 1 ,  
d Ti'' 
-+f(d, l )T;"=O, - (2.134 

(2.13b) 

The condition appropriate to the comparison system can be similarly calculated to 
be 

d T(" dS;" 
~ + f(d, 1)T;" = 0, dr dr ~ + f(d, 1)Sr = 0, r = 1. 

The conditions for both systems reduce to 

(2.14) 

(2.15) 

as d + co; in this limit, therefore, the dynamo system must also obey the exact 
E S  tf E A  eigenvalue symmetry under u f-t -u. 

Proctor (1977b) showed that the differences in eigenvalues between dynamo and 
comparison systems will be at most 0(d-3) ;  these arguments are considered further 
in $4, where numerical calculations are carried out in an attempt to explore the 
eigenvalue symmetry and to quantify the effect of the insulating boundary on dynamo 
action. 

2.4. The Braginsky limit 

Whilst we are primarily interested in obtaining three-dimensional (3D) solutions, 
the Earth's core is expected to have R, of order 102-104 (e.g. Melchior 1986), 
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making the high-R, asymptotic analysis of Braginski: (19644 of relevance. The ax- 
isymmetric Braginsky limit (which term, along with ‘the asymptotic limit’, we will 
use to denote the limit investigated by Braginski: 1964~1, as summarized below) 
allows much finer numerical resolution (for comparable computational cost) than 
the 3D system, and so can help in directing and comprehending 3D calculations,. 
In view of past numerical difficulties with such calculations, this simpler analogue 
system can also give us greater confidence in the numerical validity of our re- 
sults. 

Braginski: (1964~)  considered the limit R, >> 1, with fluid velocity and magnetic 
field ordered, in cylindrical coordinates (s, 4, z ) ,  as 

u(s, 4, z )  = u(s, z)e$ + &‘up(s, z )  + ~ l / ~ U l ( s ,  4, z ) ,  (2.16~) 

~ ( s ,  4, z )  = ~ ( s ,  z)ed + & ‘ ~ ~ ( s ,  z )  + %‘I2~’(s ,  4, z), (2.16b) 
where u(s, z ) q ,  B(s, z)e$ are the azimuthal axisymmetric components, up(s,.z), Bp(s, z )  
the poloidal axisymmetric components, and J(s, 4, z ) ,  B’(s, 4, z )  the non-axisymmetric 
fields. B, is given by scalar A(s , z )  via B, = V x (Ae4). 

gives 
Considering the azimuthally averaged induction equation to leading order in 

(2.17~)  Be 
- = v x (IC, x Be)  + v x (aBe@) + v ~ B , ,  
at 

in terms of the ‘effective’ quantities, 

Be = Be4 + V x (2.17b) 

(2.17~) 

(2.17d) 

A, = A + ; s ( {up  x ZP}/$)B, 

Me = zsed + ueP, 

(2.17e) 

In the above 

up = q u ,  (2.17g) 
angle brackets denote an azimuthal averaging, 81 /84 differentiation with respect to 
4 treating unit vectors as constants, and the hat the inverse operation of indefinite 
integration with respect to 4, the inverse of &/a$.  

We use CI for Braginsky’s r for consistency with recent notation. Equation (2 .17~)  
is the axisymmetric awequation commonly studied in MHD. except in terms of the 
effective fields defined above. 

For the KR velocity, Braginsky’s scalings can be reproduced by fixing €0 = 1, and 
considering the limit 

el + 0, R, + co, f l  = elR, = constant, (2 .18~)  

€2 + 0, €3 + 0, R, -+ co, ~ 2 ~ 3  = E ~ E ~ R ,  = constant, (2.18b) 

(2.18~) 

whilst keeping 

F I / ( c ~ c ~ )  = f l / ( ~ 2 ~ 3 )  = constant. 
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Following KR, the prescriptions given by (2.17d) and (2.17f) give 

uep = f i u p  + gle$ + ~ 4 &  (2.19~) 

(2.19b) 

(2.19~) 

where 02’” = sF/ty, 05‘ = s?/ty, and primes indicate differentiation with respect to r ;  

3 -  - 0 2c 2 i  - 2s 2c’ 
P l e  = - T f 2 e 3 t l  ( 0 2  c 2  0 2  ) 3 

24e = 7 0 6 2 e 3 t l  9 - -  0 (OF@’ - ($02”) , 

a = ? 2 E 3 ( A 1 P 1  + A3F-3, 
-0 

(2.20u) 

We have here employed Schmidt quasi-normalized associated Legendre functions Fy. 
For the KR velocity with a fixed value of p ,  dynamo action in the asymptotic limit 

is reduced to a function of a two-dimensional (2D) parameter space, ( ~ , , ~ 2 f 3 ) .  We 
may therefore specify ?I and investigate growth rates as a function of E 2 C 3 ;  we will 
most frequently be interested in locating the critical values, ( Z ~ f 3 ) ~ ,  at which magnetic 
fields are sustained. 

We investigate this limit to guide us in our 3D calculations, and so must translate 
conclusions back to the latter regime. To do so we must fix a value for € 2 ~ 3 ,  keeping 
its magnitude relatively small so as to remain close enough to the asymptotic limit 
for correspondence to be anticipated. The remaining freedom in our 3D velocity is 
then also limited to a 2D parameter space, (el,&), and a direct mapping from the 
Braginsky limit can be carried out via (2.18~) and either (2.18~) or (2.18b), producing 
extrapolated predictions of % as a function of e l .  

Justification of such faith in the utility of extrapolations from the asymptotic limit 
is given by suites of calculations approaching the limit explicitly, such as those carried 
out by KR. The axisymmetric magnetic field morphology also agrees well between 
solutions of the two systems. A good correspondence between the Braginsky limit 
and the nearby 3D regime has been obtained for all solutions presented here. 

2.5. Numerical methods 
We adopt the numerical method of Bullard & Gellman (1954), as implemented by 
Gubbins (1973), with the modifications to the boundary conditions outlined above. 
Thus we have the infinite set of coupled equations to be solved in V ,  

where V; = a2 /8r2  - l , ( l ,  + l)/r2, the greek subscripts being shorthand for the 
spherical harmonics involved, and where the interaction notation is such that (ta T$$) 
represents the production of poloidal magnetic field from toroidal via induction by a 
toroidal velocity; the detailed form of these terms, linear in the unknowns and in their 
first and second derivatives, is given by Bullard & Gellman (1954). An analogous 
formalism is used for the Braginsky limit calculations, the new interactions arising 
from the a-effect being given by Roberts & Stix (1972). 
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These equations must be truncated to a finite set, done by restricting the expansion 
to harmonics with degree 1 < L. A uniform radial grid of N points spaced as 
h = 1,” is imposed, and the radial derivatives are approximated by second-order 
finite differences, incorporating the appropriate matching conditions at r = 1. This 
yields an algebraic eigenvalue problem, which we then solve via inverse iteration, or 
(at low truncation) the QR method (see e.g. Press et al. 1989). 

Eigenvalues obtained by these algebraic methods are limited to the U(h’) accuracy 
of the finite-difference scheme. More accurate values can be obtained via Richardson 
extrapolation of eigenvalues obtained for two or more different mesh sizes. The 
O(h2) and higher error terms can then be eliminated, leading to O(h4) or more 
accurate solutions. Eigenvalues obtained in this way were found to agree well with 
those calculated using the independent parallel shooting method of Conte (1966), 
here adopted with fourth-order Runge-Kutta integration. In addition, the solutions 
reported by Pekeris et al. (1973), KR, and Dudley & James (1989) have all been 
successfully reproduced. 

Checks such as these cannot, however, give information on the reliability of the 
convergence of solutions. The truncation of the spherical harmonic expansion at 
degree L artificially restricts the flow of energy to short length scales, potentially mis- 
representing the physical problem. The literature shows that this truncation problem 
has in the past led to erroneous conclusions. 

As noted by Gubbins (1973), the apparent convergence of eigenvalues at relatively 
low truncation levels is not in itself sufficient indication of a converged solution. 
Convergence of the eigenvector must be examined either graphically or through the 
calculation of form-dependent (and hence relatively sensitive) quantities such as the 
magnetic energy and ohmic dissipation, the calculation of which is considered by 
Pekeris et al. (1973); these measures must be seen to be consistent from calculations 
at a range of truncation levels, before confidence may be placed in any solution. 

For dynamos in the high-&, nearly axisymmetric regime appropriate to Braginsky’s 
analysis, however, agreement between the asymptotic solution and the solution in the 
nearby 3D regime provides an ideal test of numerical convergence. The asymptotic 
limit constitutes a numerically independent system approximating the same physi- 
cal state, and its greater simplicity allows calculations to be carried out to much 
finer resolution. 

An alternative truncation scheme was also adopted to investigate numerical con- 
vergence further. Here we incorporate only harmonics satisfying 

E + m < L d ;  (2.22) 

this scheme, referred to as triangular truncation, and successfully applied in other 
contexts (e.g. Zhang & Busse 1987), allows the behaviour of long azimuthal wavelength 
modes to be explored to greater resolution at the expense of the short azimuthal 
wavelength modes. Although clearly not of universal use, the predominance of energy 
in the low-rn modes, observed in the solutions detailed below, allowed this method to 
be adopted with negligible loss of accuracy. 

The numerical difficulties encountered should not be underestimated, as they arise 
from the very nature of the problem addressed, whether a self-sustaining magnetic 
field solution exists. For R, below a certain minimum value, all solutions must decay 
with time (e.g. Roberts & Gubbins 1987). Increasing & is essential in order to 
find dynamo action, but this decreases the length scale of the magnetic field as the 
smoothing effects of diffusion are reduced, and will ultimately cause any numerical 
scheme to fail through lack of spatial resolution. 



Kinematic dynamos with strong diferential rotation 233 

Thus there are only two possible outcomes from a calculation: 
(a)  a self-sustaining magnetic field is found, with corresponding G, which appears 

to converge satisfactorily according to the criteria outlined above; 
(b)  we are unable to find marginally stable solutions for values of R, less than 

some upper limit set by the numerical scheme. 
We can never assert that a given flow fails to excite a dynamo, as the behaviour at 
higher R, remains unknowable. 

3. Variations in solutions obtained for varying velocity parameters 
3.1. The role of meridional circulation 

Meridian circulation was shown by Roberts (1972) to play an important role in 
determining the time-dependence of aw-dynamos. Its importance for the KR velocity 
was investigated through varying the parameter € 1 ,  holding other parameters constant. 
The radial complexity of the convective cells was fixed at three cells ( p  = 3n), this 
value providing a relatively large-scale laminar flow yet allowing for well-converged 
solutions (increasing p increases the ease with which dynamo action is obtained, and 
the ease of numerical convergence, as shown in $3.2). The strength of the convection 
was fixed at e2 = e3 = 0.04. 

Before considering the 3D results, we examine the Braginsky limit system, whose 
simplicity facilitates thorough investigation. Marginal stability curves for this system 
are shown in figure 1. The range -300 < F l  < 300 is considered, and solutions 
for both signs of F2F3  are shown, for lF2F31 d 100. The solution investigated by 
KR is marked KR. Points A-F, giving the most easily excited modes of E”P,” and 
ESP:  symmetry at el = -250, 0, 250 for F 2 2 3  > 0 are marked for future reference; 
likewise points G-L, for F2F3  < 0. The numerical convergence of these solutions is 
good; calculations for these 12 points have been conducted to degree L = 32, giving 
eigenvalue convergence to 6 significant figures. 

The solution branch located by KR (EAP,”, F l  > 0, T 2 F 3  > 0)  can be seen in relation 
to the wider range of solutions obtained. The overall picture is complicated - with, 
for example, bifurcations from stationary to oscillatory solutions at the approximate 
points (PI, F 2 F 3 )  = (-197,83), (-80,58), (96, -64), (155, -75) -but the behaviour of the 
most easily excited modes is relatively straightforward. With no meridional circulation, 
oscillatory solutions are preferred ; with the addition of meridional circulation in either 
sense, stationary solutions become more easily excited, and, for the ‘correct’ sense of 
el, possess considerably smaller critical values of 2223. This behaviour is consistent 
with the conclusions of Roberts (1972) on the behaviour of quite general, arbitrary, 
ctw systems. 

E A  solutions tend to be the more easily excited symmetry for F2F3 > 0, whilst for 
F2F3  < 0, E S  solutions are preferred; the mapping E l  -+ - F 1 ,  c 2 c 3  -+ + 2 f 3  (physically 
identifiable with u -+ -u) approximately transposes an E A  solution for an E s  solution 
and vice versa. Again, this is consistent with Roberts (1972), and is as anticipated 
from considerations of the adjoint system outlined in $2.3. 

This picture is clear for the Braginsky limit; we are, however, interested in non- 
axisymmetric solutions at finite R,. Extrapolating the above results to the case 
€ 2  = €3 = 0.04 using (2.18a)-(2.18~), we obtain the predicted behaviour given in 
figure 2. The points A-L correspond to the solutions marked on the earlier figure. 
(For clarity, only the most easily excited solution branches have been shown here.) 
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FIGURE 1. Critical stability curves fZfj with T I ,  for the Braginsky limit system with p = 3n, at 
truncation level ( L , N )  = (14,40). Thin (thick) lines denote E A  ( E s )  solutions; solid (dashed) lines 
denote stationary (oscillatory) solutions. Points A-L and KR are referred to in the text. 

Figure 3 shows the true variation of & with ($1 for 3D calculations with €2 = €3 = 
0.04, conducted at truncation level (L,  N )  = (14,150). This figure details only solution 
branches that are most easily excited for some value of el; the convergence of other 
solutions, with critical values at higher R,, was not deemed good enough to warrant 
extensive calculations, even at this resolution. In all essential details this plot concurs 
with figure 2, highlighting the utility of Braginsky's high-&,, limit. 

To allow a more complete range of solutions to be considered and to verify 
convergence more thoroughly, the solutions corresponding to the isolated points A-L 
were investigated in more detail, employing the triangular truncation scheme of (2.22) 
for resolutions ( L d , N )  up to (24,150); the results are given in table 2. For solutions 
at lower R&, convergence is quite satisfactory. For those of higher R& (points E, 
F, K, L), the convergence is poorer, but still acceptable. Furthermore, in all twelve 
cases the agreement of solution morphology between the 3D and the Braginsky limit 
calculations gives every reason for confidence in even the least well converged of 
these solutions. 

All these solutions remain within the high-R,, nearly axisymmetric regime, the bulk 
of the magnetic energy in each case lying in the axisymmetric components of the 
field. The morphology of this part of the field is shown in figures 4-6 for the 3D 
solutions A, B, C, F, given in table 2, illustrating the most easily excited solution 
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FIGURE 2. Predicted & variations for €2 = € 3  = 0.04, from extrapolation of Braginsky limit results 
for p = 3n: at (L ,  N )  = (14,40). Points A-L and KR refer to the corresponding solutions in figure 1 ; 
line types are as for that figure. 

branches obtained with varying el for R, > 0. We show the axisymmetric toroidal 
field B,, and a ‘streamfunction’ for the axisymmetric poloidal field, F,, given by F4 = 
sin 8 dS(r, 0, $)/do, analogous to the streamfunction used by Zhang & Busse (1987). 

The oscillatory behaviour of solutions B and F consists of the cyclical appearance 
and migration of bundles of magnetic flux: a manifestation of the dynamo-wave 
mechanism familiar in mu-models (see, e.g. Parker 1979). The migration observed is 
poleward for the solutions shown, where R,,, > 0, and is equatorward for the solutions 
obtained for R, < 0, consistent with the conclusions of Roberts (1972) for am-models. 

Figures 7-9 show the radial magnetic field B,, at r = 1, for the same solutions. 
This quantity constitutes the field visible to an external observer, and thus is of use 
for comparisons with the magnetic fields of planetary bodies. These plots illustrate 
the nearly axisymmetric nature of the solutions; very little energy can be seen in 
azimuthal wavenumbers in > 2. For the oscillatory solutions, the migration of flux is 
once more evident in the flux observed at the surface of the dynamo region. 

The stationary E A  solution located by KR can now be seen as only one of a variety 
of possible solutions for the general KR velocity, with meridional circulation being a 
critical factor in controlling the solution physically preferred. This variation explains 
the inability of Hutcheson & Gubbins (1994) to locate a stationary E A  dynamo for 
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FIGURE 3. True 4 variation for e2 = e3 = 0.04, for p = 3 x  at ( L , N )  = (14,150). Line types are as 
for figure 1. 

the Lilley (el = 0) case of the p = 3n: KR velocity, the most easily excited E A  field in 
this case being oscillatory. 

E S  fields are in general equally easily excited as E A  fields, the solutions again 
displaying the approximate symmetry under u ---f -u (reflection in the x-axis in 
figures 2 and 3),  discussed in $2.3; this symmetry is further investigated in $4. 

To some extent the changes in field morphology obtained for varying meridional 
circulation can be understood through simple considerations of flux advection. Gub- 
bins (1993) and Hutcheson & Gubbins (1994) have previously related the regions of 
surface flux concentration in KR dynamos to regions of downwelling of the non- 
axisymmetric flow. This argument derives from consideration of the frozen-flux (i.e. 
infinite R,) limit, where radial field is carried in flux bundles by flow tangential to the 
surface, and concentrated where the flow ultimately downwells; given the high values 
of R,,, associated with Braginsky regime dynamos, it seems reasonable that a similar 
behaviour be observed. Thus solution A, with a positive sense of meridional circula- 
tion (corresponding to upwelling at the poles), has its principle flux concentrations 
offset from the poles, whilst solution C, for el < 0 (polar downwelling) has a greater 
concentration of flux at high latitudes (figure 7 ) .  

The value of €1 has been kept small in the preceding, to remain within the 
Braginsky regime. Figure 3, however, shows that the E A  solutions obtained for el > 0 
remain easily excited to higher values of F ~ .  As €1 increases further however, this 
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solution branch becomes less easily excited, and convergence deteriorates. Plots of 
the axisymmetric field associated with solutions for increasing €1 (figure 10) show why 
this is the case: the increasing meridional circulation expels the toroidal field from 
the interior, in the manner associated with flows with closed streamlines investigated 
by Weiss (1966). The toroidal field, being unable to penetrate to the insulating 
region c. remains concentrated at the boundary, resulting in high ohmic dissipation, 
ultimately prohibitive to dynamo action. A similar effect was first seen in dynamos 
with axisymmetric flows by Bullard & Gubbins (1977). 

3.2. The radial complexity of the convective cells 

The complexity of fluid motion necessary for dynamo action is a point of some interest 
to dynamo theory, some degree of complexity being required from the numerous anti- 
dynamo theorems - and being anticipated to facilitate more efficient field production 
via the various a-effect analyses - yet large-scale laminar flows being anticipated to 
be energetically preferable. For the KR velocity, the effect of the radial complexity of 
the convective motions can be investigated through varying p. 

Figure 11 shows the critical dynamo curves obtained in the Braginsky limit with 
p = x, 274 371, 4x, for both signs of f2f3 and for -300 < el < 300. The broad features 
obtained in each case are similar, the role of meridional circulation and the importance 
of the sign of P2E3,  investigated in the preceding section, being verified for each p .  There 
are two obvious variations of importance, however. First, the critical values of E2T3 

decrease markedly as p increases; this was to have been expected from the dependence 
of the regenerative term c1 on the parameter p ,  given by (2.201, which, for the KR 
velocity transcribed via 022' = g(r)  cos pr ,  02 = g ( r )  sin pr ,  depends on the simple forms 

( 3 4  
2c' 2s" 2s' 2c" 

O2 O2 - O2 G2 = p(gg" - 2g'2 - p2g2) .  

Secondly, increasing p shifts the whole pattern of critical curves towards more positive 
values of ? I ;  again this could have been expected from the analysis of Braginsky, 
the effective meridional circulation given by (2.19), again, by the above, depending 
relatively simply upon p .  The contribution of the convective cells to the meridional 
circulation is therefore of importance, with the result that, for example, the Lilley 
(€1 = 0) case favours a stationary field for the large-scale flow p = 71, but an oscillatory 
field for p = 371. 

As large-scale laminar flows are anticipated to be energetically favoured, the case 
p = 7c is investigated in more detail. Figure 12 shows the critical dynamo curves antici- 
pated for €2 = €3 = 0.04, extrapolated from Braginsky limit solutions as before. Again 
points A-L, corresponding to the most easily excited solutions at F1 = -250,0,250, 
are marked. As was the case with p = 3x, the convergence of the Braginsky limit 
solutions is again good. The high values of associated with the p = x solu- 
tions unfortunately make the convergence of the corresponding 3D solutions poor, 
and reasonable approximations to all these solutions could not be obtained at the 
numerical resolution currently possible; the most-easily excitable solutions are attain- 
able however, and figure 13 shows the critical curves obtained for these solutions 
at (L,  N )  = (16,150); table 3 illustrates the convergence of the solutions A, B, G, 
H, for triangular truncation levels up to (LA,  N )  = (24,150). The axisymmetric field 
associated with thesle solutions is shown in figure 14; variations in morphology with 
€1 are consistent with that obtained in the preceding section. 

The E A  field obtained in the Lilley case, point B, is indeed found to be stationary, in 
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Point A: E A ,  €1 = 0.080 (Brag. limit => 3090) 
Ld\N 100 150 W4) 

14 4645.66 4671.34 4691.89 
16 4652.63 4678.22 4698.69 
18 4651.78 4677.46 4698.00 
20 4651.96 4677.59 4698.10 
22 4651.99 4677.63 4698.15 
24 4651.95 4677.59 4698.1 1 

Point B: E A ,  €1 = 0 (Brag. limit => 18500(25)) 
LAW 100 150 W4) 

14 18720 (11.27) 19420 (11.49) 19980 (11.67) 
16 18600 (13.68) 19540 (14.37) 20290 (14.92) 
18 19090 (12.24) 20580 (12.64) 21770 (12.96) 
20 19090 (12.23) 20610 (12.64) 21830 (12.97) 
22 19090 (12.25) 20610 (12.69) 21830 (13.04) 

Point C: E A ,  el = -0.016 (Brag. limit - 16100) 

Li\4N 11E.O 11638.5 11620.5 
16 
18 14702.1 14890.9 15041.9 
20 15073.6 15393.9 15650.2 
22 15021.1 15314.8 15549.6 
24 15026.0 15322.6 15559.8 
Point D: E S ,  €1 = 0.014 (Brag. limit => 18000) 

L?\4N l g . 1  19195.8 21429.2 
16 16699.0 19491.9 21726.2 
18 16702.8 19519.6 21773.1 
20 16744.2 19594.0 21873.9 
22 16734.3 19555.1 21811.8 
24 16737.8 19565.3 21827.3 
Point E: E S ,  €1 = 0 (Brag. limit => 23500) 

Li\bv 2 1 E . 8  22322.3 22888.3 
16 21312.0 22025.6 22596.5 
18 21617.6 22480.0 23169.8 
20 21647.6 22487.9 23160.2 
22 21611.9 22438.6 23100.1 
24 21610.7 22435.4 23095.1 

150 0(h4)  

- __ - 

150 0(h4)  

150 W4) 

Point F: E S ,  €1 = -0.0082 (Brag. limit => 30400(117)) 

38760 (155.1) 38170 (140.0) 37700 (127.9) 
16 43910 (139.1) 33710 (115.9) 25550 (97.34) 
18 42880 (156.2) 36320 (131.5) 31070 (111.7) 

100 150 W4) 

20 __ 45580 (147.5) __ 
22 - 46890 (147.1) - 

TABLE 2. Continued on facing page. 

contrast to the situation for p = 3n, so the importance of the effective meridional cir- 
culation arising from the non-axisymmetric velocity, influencing the time-dependence 
in the same way as the ‘true’ (axisymmetric) meridional circulation, is verified. Hutch- 
eson & Gubbins (1994) obtained a similar solution for this case ( p  = n, el = 0) 
upon the addition of a quiescent conducting layer of the type considered in $4, but 
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Point G: E S ,  el = 0.056 (Brag. limit => -4270) 
Ld\N loo 150 0(h4) 

14 -4727.37 -4648.48 -4585.37 
16 -4701.87 -4626.19 -4565.65 
18 -4710.57 -4633.68 -4572.16 
20 -4707.17 -4630.77 -4569.65 
22 -4708.14 -4631.58 -4570.34 
24 -4707.81 -4631.31 -4570.11 

Point H: ES, el = 0 (Brag. limit - -13300(32)) 
L d \ N  100 150 0(h4)  

14 -17340 (33.02) -15610 (33.54) -14230 (33.96) 
16 -16960 (33.64) -15310 (33.30) -13990 (33.03) 
18 -17140 (33.64) -15330 (33.35) -13880 (33.12) 
20 -17170 (33.63) -15350 (33.36) -13890 (33.14) 
22 -17160 (33.63) -15350 (33.36) -13900 (33.14) 

Point I: E S ,  el = -0.016 (Brag. limit * -15300) 
LA\N 100 150 0(h4) 

- - 14 
16 
18 -21663.8 -18387.8 -15766.9 
20 - -19065.6 - 

22 - -18950.3 - 
- -18965.5 - 24 

Point J: E A ,  el = 0.024 (Brag. limit 3 -10500) 

- 

~~ - - 

Ld\N 100 150 0(h4)  
- - 14 - 

16 -12524.5 -11778.8 -1 1182.3 
18 -13036.1 -11979.4 -11134.0 
20 -13048.1 -12031.3 -11217.9 
22 -13040.7 -12014.4 -11193.4 
24 -13066.3 -12028.0 -11197.3 

Point K: EA,  el = 0 (Brag. limit -24700) 
LA\N 100 150 0(h4) 

14 - -25205.7 - 

16 -25823.0 -25152.8 -24616.6 
18 -27095.2 -26362.6 -25776.5 
20 -26806.0 -26174.7 -25669.7 
22 -26726.8 -26091.3 -25582.9 
24 -26739.1 -26102.1 -25592.4 

Point L: E A ,  €1 = -0.0084 (Brag. limit = -29900(117)) 
LA\N 100 150 0 (h4 1 

14 -24940 (108.3) -26510 (110.2) -27770 (111.7) 
16 -27010 (111.4) -27940 (110.1) -28680 (109.1) 
18 -27260 (113.0) -28970 (115.0) -30340 (116.6) 
20 -27840 (113.9) -29860 (115.8) -31480 (117.3) 
22 -27830 (1 13.6) -29800 (1 15.4) -3 1 380 (1 16.8) 

TABLE 2. Convergence of &(w,w # 0) eigenvalues of selected 3D solutions, p = 3n. The 
solutions chosen approximate the extrapolations of the Braginsky limit solutions given above 
for €2 = €3 = 0.04. (The eigenvalues anticipated from the extrapolation are given in the header 
captions). The triangular truncation scheme was used for these calculations, with LA up to 24 for 
stationary solutions, 22 for oscillatory solutions. 
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FIGURE 4. The axisymmetric field, in meridional planes, for the marginal stationary E’P? solutions 
obtained for p = 371, €2 = €3 = 0.04, R, > 0, triangular truncation level (Ld ,N)  = (24,150). (a) B,,+ 
for solution A, 61 = 0.08, K = 4678, contours from -300 to 300. (6) F6, solution as for (a), 
contours from -1.5 to 0. (c )  Bb for solution C ,  el = -0.016, % = 15320, contours from -900 
to 900. ( d )  Fb, solution as for (c), contours from -1.5 to 0. Both solutions (and all E A  solutions 
subsequently shown) have been normalized by setting S;(1) = 1. All plots employ 11 contour levels, 
equally spaced between the limits specified; solid (dashed) lines denote positive (negative) values. 

could not locate a solution without such a layer. The quiescent layer now appears 
not to play a critical role: its presence does increase the ease of dynamo action, but 
the previous failure to locate a regenerative solution in its absence lay simply in the 
higher value of & required, making adequate numerical representation beyond the 
resolution available to earlier studies. The inability of KR to obtain any dynamo 
solutions for p < 27c can be similarly explained. 

We have also investigated solutions for p > 47c, and obtained consistent behaviour. 
For slightly greater values of p ,  the convergence of 3D solutions is improved, the 
smaller values then required decreasing the numerical difficulties encountered; 
for yet larger p ,  the numerical representation of the many convective cells becomes 
increasingly inadequate, and convergence problems are again encountered. 

3.3. The strength of the convective cells 
The previous section considered the influence of the radial complexity of convection 
on dynamo action, but was restricted to e2 = €3 = 0.04. Here the influence on 
dynamo action of the latter parameters, controlling the strength of the convective 
cells, is investigated. Only the regions of the most easily excited stationary solutions 
obtained for p = 3x with el = 0.03 are investigated, but both the E A  solutions 
obtained for R, > 0 and the E S  solutions for R, < 0 are considered. Results are 
presented only for (L, N )  = (12,150); these solutions have, however, been confirmed 
by calculations at higher truncation levels. 

Table 4 shows the variation of & for selected values of €2 and €3. % generally 
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FIGURE 5. The axisymmetric field of the marginal oscillatory E"P2 solution B, with p = 3x, €1 = 0, 
€2 = € 3  = 0.04, eigenvalue & = 20610, w = 12.69 at triangular truncation level (LA,  N )  = (22,150). 
(a), (c), (e) and (8)  show B4 at wt = 0, x/4, x/2 and 3n/4 respectively. (b), (d ) ,  0, (h)  show F4 at 
the same intervals. Contours of I34 are from -1250 to 1250, of F4 from -1.75 to 0.75. Other details 
are as for figure 4. 
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FIGURE 6. The axisymmetric field of the marginal oscillatory ESP:  solution F, with p = 3n, 
€1 = -0.0082, €2 = €3 = 0.04, eigenvalue & = 46880, w = 147.1 at triangular truncation level 
( L d , N )  = (22,150). (a), (c), (e )  and (g)  show B4 at ot = 0, n/4, x / 2  and 3n/4 respectively. (b), (d ) ,  
0, ( h )  show F4 at the same intervals. The solution has been normalized by setting ReSp(1) = 1. 
Contours of B+ are from -6000 to 6000, of F4 from -5 to 5. Other details are as for figure 4. 
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FIGURE 7. The radial field, on cylindrical equidistant projections of the surface r = 1, for the 
marginal stationary E”Pf solutions detailed in figure 4. (a) B, for solution A, contours from -5 to 
5. (b)  B, for solution C, contours from -17.5 to 17.5. Other details are as for figure 4. 

decreases as e2 and e3 are increased, as should be anticipated, the convective cells 
necessary for dynamo action then being enhanced. Figure 15 shows the variation in 
the form of the field as f2 = e3 is increased from 0.02 to 0.16. It can be seen that 
the form of the field is in each case similar; the relative magnitudes of the various 
components of field vary, however, as the deviation from the Braginsky limit increases. 
Thus axisymmetric field accounts for 99.63% of the magnetic energy (98.50% of the 
ohmic dissipation) at e2 = f 3  = 0.02, dropping to 93.43% (76.07%) at €2 = €3 = 0.16; 
toroidal field incorporates 99.78% of the magnetic energy (99.25% of the ohmic 
dissipation) at ~2 = €3 = 0.02, 93.83% (90.97%) at €2 = €3 = 0.16. 

Clearly, however, even at e2 = e3 = 0.16, the Braginsky limit remains a useful 
approximation; the field remains predominantly toroidal and axisymmetric, and the 
morphology of figure 15 remains identifiably that of the corresponding asymptotic 
solution. Indeed, the variation in the axisymmetric field in these figures can be related 
to the variations observed with T1 in the limit, since, as € 2  = €3 is increased with €1 

held constant, decreases, and so 21 decreases. Thus the effect of increasing €2 and 
€3 is comparable with that of decreasing el, as long as we remain within the Braginsky 
regime; figure 15 exhibits variations in morphology comparable with figure 10. This 
can be understood with reference to figure 16. 

As € 2  and €3 are further increased, deviations from the Braginsky limit continue 
to increase until convergent solutions capable of producing dynamo action can no 
longer be obtained. 

Deviations from the Braginsky limit are of course non-negligible for the solutions 
of table 4. This is most obvious in comparisons of solutions with constant product 
f2e3. In the Braginsky limit, only this product is of import. K R  noted, however, that 
this does not hold for 3D calculations, with ‘asymmetry’ between € 2  and 6 3  affecting 
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FIGURE 8. The radial magnetic field on I = 1 for the marginal oscillatory E”P,” solution B detailed 
in figure 5. (a)-(d) show B, on r = 1 at wt = 0, n/4, n/2 and 3n/4 respectively. Contours are from 
-7.25 to 7.25; other details are as for figure 4. 
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FIGURE 9. The radial magnetic field on I = 1 for the marginal oscillatory E S P ;  solution F detailed 
in figure 6. (a)-(d) show B, at wt = 0, n/4, n/2  and 3n/4 respectively. Contours are from -25 to 
50; other details are as for figure 4. 
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FIGURE 10. The axisymmetric field of stationary E”P,” solutions obtained for p = 37[, € 2  = €3 = 0.04, 
with varying €1 > 0, truncation level ( L , N )  = (14,150). (a,b) B4 and F4 for €1 = 0.01, & = 4604.41. 
(c,d) Bg, F4 for €1 = 0.04, & = 3918.47. (e,A B4, F4 for €1 = 0.08, = 4669.93. (g,h) B4, F$ for 
€1 = 0.12, Rh = 5596.33. Contours of Bg are from -300 to 300, of Fb from -1.5 to 0; other details 
are as for figure 4. 
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FIGURE 11. Critical stability curves, ?2?3 with Z1, for the Braginsky limit with (a) p = 7c, ( b )  p = 27c. 

dynamo action, and dynamo efficiency greatest for € 2  = € 3 ;  the imbalance in the two 
components of the convective cells present when € 2  # €3 results in more energy being 
diverted to the non-axisymmetric magnetic field at the expense of the axisymmetric 
field whose maintenance, by the a-effect mechanism outlined by Braginsky, is necessary 
for dynamo action. Thus, comparing solutions with € 2 ~ 3  = 0.0016, 98.90% of the 
magnetic energy (94.60% ohmic dissipation) is in the axisymmetric field for the 
case (€2 ,  €3)  = (0.04,0.04), in contrast with 97.09% (87.77%) and 97.49% (88.62%) 
for the cases ( € 2 , ~ )  = (0.02,0.08) and (0.08,0.02) respectively. In the extreme cases 
of imbalance €2 = 0 or €3 $=; 0, dynamo action cannot be obtained, as could be 
anticipated from consideration of the asymptotic limit, where both sin m@ and cos m@ 
components must be present for a non-zero cr-effect to be produced. 

3.4. Solutions of other symmetries 
For the KR velocity, the discussion of 52.2 showed that kinematic solutions of ESP;, 
EAP;, ESP:, and EAPf morphologies all exist independently; solutions of each of 
these symmetries were therefore investigated. Figure 17 shows the growth rates of the 
least rapidly decaying modes as a function of R,, for the KR velocity with p = 374 
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el = 0.03, e2 = c3 = 0.04, at truncation level ( L , N )  = (12,100). The E A P ;  solution 
KR investigated has Iu;, = 3883 at this truncation; none of the other symmetries 
achieve positive growth rates within this range of R,, so that the E”P,” solution is 
indeed the most easily excited. The solutions whose eigenvalues have positive real 
part are here oscillatory for all symmetries other than ,YAP;. 

Similar investigations for other velocity parameters confirm that the solution 
branches illustrated in the previous sections do represent the most easily excited 
modes, the ESP! solution in many cases, detailed above, being the most easily excited. 
In all cases investigated, however, growth rates for the two P t  symmetries remain neg- 
ative. This is perhaps not surprising, as these symmetries do not contain the axisym- 
metric components expected by Braginsky’s analysis to dominate the high-Rm regime. 

4. The adjoint symmetry and the influence of the boundary 
4.1. The adjoint symmetry 

In addition to allowing an investigation of the approximate symmetry between E S  
and EA eigenvalues of systems with velocities of opposite sense, observed above, 
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FIGURE 12. Predicted R f ,  variations for €2 = €3 = 0.04, from extrapolation of Braginsky limit results 
for p = 7~ at ( L , N )  = (14,40). Line types are as for figure 1. Points A-L are referred to in the text. 

the adjoint systems introduced in $2.3 allow a straightforward yet non-trivial test of 
our numerical method. The interaction terms arising in (2.21)-(2.21) differ markedly 
between the physical E A  system and the adjoint E S  system, and so the required 
symmetry of eigenvalues can only be observed if all interactions are accurately 
represented numerically. 

To investigate the adjoint of Kono & Roberts (1991), we need only invert the sign 
of all interaction terms in the induction equation. Table 5 shows the eigenvalues of 
the most easily excited solutions of the dynamo and adjoint systems, for the KR 
velocity with both R,,, > 0 and R, < 0. The symmetry of Richardson-extrapolated 
eigenvalues - between E S  adjoint solutions and E A  dynamo solutions, and vice versa 
- is satisfied to 4 significant figures, a satisfactory result. This table also highlights 
the approximate symmetry betwezn physical E A  and E S  solutions noted previously; 
the deviation in IGi between the E A  and E S  solutions of the dynamo systems with 
R, > 0 and R, < 0 is only of order 15 %, illustrating the finite influence of the 
boundary which motivates the investigations in $4.2. 

Solutions for & could only be obtained for the P; symmetries (the P t  symmetries 
permitting no growing solutions for this velocity, as detailed in 93.4). Growth-rate 
eigenvalues were investigated for all solution symmetries, however, and results are 



250 G. R. Sarson and D. Gubbins 

Rk 

40 000 

\ 

20000 

-0.005 

~ 20 000 

-40 000 

60000 

-80000 

' €1 
0.005 0.010 0.015 0.020 

H 

FIGURE 13. True variation for e2 = e3 = 0.04, for p = n at ( L , N )  = (16,150j. The points 
marked refer to the corresponding solutions in figure 12; line types are as for figure 1. 

given in table 6.7 The agreement is once more reasonable, verifying that our numerical 
technique satisfactorily represents interactions for all these symmetries. 

The am-code employed for Braginsky limit calculations was also verified through 
solution of the adjoint system; the adjoint symmetry is satisfactorily obtained, with 
results agreeing well with those given by Kono & Roberts (1991). 

The comparison system of Proctor (1977b) allowed the adjoint symmetry between 
E A  and E S  modes under u -+ -u to be established. Although the boundary condi- 
tions invoked by Proctor are unphysical, they asymptotically approach the physical 
boundary conditions in the limit of thick conducting external shells, a limit investi- 
gated in the following. Therefore the comparison system, which also allows a further 
global check on our numerical method, is investigated numerically, through solving 
the induction equation with the boundary condition (2.12) imposed. Table 7 shows 
growth-rate eigenvalues obtained with this system for each solution symmetry of the 
KR velocity with R, = +4000. The agreement between E A  solutions for R,,, > 0 and 
E S  solutions for R, < 0, and vice versa, is excellent. 

In this and in subsequent tables, only Kichardson extrapolated eigenvalues will be quoted, 
these being calculated as before. Full details of the calculations are avaliable from the authors or 
the JFM Editorial Office. 
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Point A: E A ,  el = 0.016 (Brag. limit * 15600) 
100 150 0(h4) ";iN 17506.6 18613.9 19499.8 

16 17512.6 18641.9 19545.4 
18 18249.2 18273.1 18292.2 
20 17518.2 18633.8 19526.2 
22 17517.8 18631.5 19522.5 
24 17517.9 18629.3 195 18.4 

Point B: E A ,  €1 = 0 (Brag. limit 22900 ) 
LA \N 100 150 0(h4)  

14 20112.2 21876.1 23287.3 
16 20108.9 21871.5 23281.7 
18 20108.1 21869.9 23279.3 
20 20108.1 21869.7 2 3 2 7 9.0 
22 20108.1 21869.7 23279.0 
24 20108.1 21869.7 2 3 2 7 9.0 

Point G: E S ,  .el = 0.012 (Brag. limit 3 -21900) 
Ld\N 100 150 0(h4)  

14 -20135.9 -21296.8 -22225.5 
16 -20427.2 -21669.4 -22663.2 
18 -20246.3 -21441.8 -22398.3 
20 -20351.3 -21560.9 -22528.6 
22 -21148.7 -21301.8 -21424.3 
24 -20298.8 -21501.7 -22464.1 

Point H: E S ,  el = 0 (Brag. limit - -61900) 
Ld\N 100 150 o(h4) 

- - - 14 
16 -48171.2 -56047.2 -62348.0 
18 -48701.4 -55994.7 -61829.3 
20 -48525.9 -55697.1 -61434.1 
22 -48346.3 -55585.4 -61 376.7 
24 -48219.8 -55637.6 -61571.8 

TABLE 3. Convergence of RF, eigenvalues of selected 3D solutions, p = K. The solutions chosen 
approximate the extrapolations of the Braginsky limit solutions given above for € 2  = €3 = 0.04. 
(The eigenvalues anticipated from the extrapolation are given in the header captions.) The triangular 
truncation scheme was used for these calculations, with LA up to 24. 

4.2. Dynamo systems with quiescent conducting external shells 
The preceding section verified the symmetry of eigenvalues pertaining to two different 
mutually adjoint systems, both involving unphysical boundary conditions. To relate 
these results to physical dynamo systems, we must link these solutions to solutions 
employing physically reasonable boundary conditions. This is done through consid- 
eration of dynamo systems with quiescent conducting shells external to the active 
dynamo region. Such layers have been incorporated into kinematic dynamo models 
by previous authors, including Bullard & Gubbins (1977), Serebrianya (1988) and 
Hutcheson & Gubbins (1994). 

The altered boundary conditions obtained upon the addition of a shell of thickness 
d - 1 outside the fluid sphere r < 1, are given for both the physical and comparison 
systems in (2.13a)-(2.14); we have here specialized to the stationary case. 

Eigenvalues for the dynamo and comparison systems with various d are given in 
table 8, with both E A  solutions ( R ,  > 0) and Es solutions (R, < 0) being considered. 
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E A  

€2\€3 0.02 0.04 0.08 0.12 0.16 
0.02 17380.1 7147.11 4209.65 3720.38 3846.38 
0.04 8018.40 3892.82 2457.14 2135.74 2139.98 
0.08 5839.15 2814.43 1654.82 1330.82 1234.19 
0.12 6982.59 2917.20 1486.28 1084.60 926.802 
0.16 11879.7 3752.17 1597.57 1025.72 798.450 

ES 

Q\€j 0.02 0.04 0.08 0.12 0.16 
- -9522.53 -5193.39 ~- _._ 0.02 

0.04 -8483.40 -4545.98 -3243.79 -2995.58 
0.08 -4281.03 -3139.71 -2467.42 -2220.14 -2243.69 
0.12 -3835.58 -3001.44 -2289.97 -1931.10 -1809.05 
0.16 -3987.38 -3250.02 -2285.65 -1793.36 -1554.50 

TABLE 4. & eigenvalues for selected values of e2 and €3, for the KR velocity with 
p = 371,~l = 0.03, at truncation level ( L , N )  = (12,150). 

\N 50 100 150 0 ( h 6 )  
R, > 0 Dynamo E A  3832.80 3882.67 3892.80 3901.11 

Adjoint E S  4634.76 4055.27 3967.49 3901.67 
R, < 0 Dynamo E S  -4755.81 -4576.20 -4543.58 -4517.63 

Adjoint E A  -4800.67 -4580.64 -4545.17 -4517.99 

TABLE 5. Most easily excited eigenvalues (4) of the dynamo and adjoint systems with the KR 
velocity p = 3n, € 1  = 0.03, € 2  = F3 = 0.04, for both positive and negative R,. Calculations employed 
truncation level L = 16. 

Dynamo Adjoint 
P!ES -23.7628 + 12.7560 i 0.191576 + 0 i 
P?EA 0.190940 + 0 i -23.7627 + 12.7563 i 
P?ES -216.121 + 358.663 i -240.505 + 358.398 i 
P t E A  -240.507 + 358.397 i -216.119 + 358.666 i 

TABLE 6. Growth-rate eigenvalues of largest real part for all solution symmetries of the dynamo 
and adjoint systems with the KR velocity p = 371, €1 = 0.03, €2 = €3 = 0.04, and R, = 4000. 
Calculations employed truncation level L = 14, and O(h6) Richardson extrapolation from the 
eigenvalues obtained for N = 50, 100 and 150. 

R, = 4000 R, = -4000 
P$ES -29.8860 + 17.3549 i -19.7926 + 0 i 
P?EA -19.7929 + 0 i -29.8860 + 17.3549 i 
P t E s  -234.136 + 3779.59 i -223.063 + 3760.89 i 
P!EA -223.064 + 3760.89 i -234.136 + 3779.59 i 

TABLE 7. Growth rate eigenvalues of largest real part for all solution symmetries of the comparison 
problem with the KR velocity p = 371, €1 = 0.03, € 2  = €3 = 0.04, and with l&l = 4000. Calculations 
employed truncation level L = 14, and O(h6)  Richardson extrapolation from the eigenvalues 
obtained for N = 50, 100 and 150. 
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FIGURE 14. The axisymmetric field of the marginal stationary E’PpZ” solutions obtained for p = x, 
e2 = c3 = 0.04, R, > 0, triangular truncation level ( L A ,  N )  = (24,150). (a)  Bg, solution A with 
€1 = 0.016, % = 18629.3, contours from -1.5 to 0. (17) F4, solution as for (a), contours from -1250 
to 1250. (c) B4, solution B with €1 = 0, Rk = 21869.7, contours from -1.25 to 0. (d )  F4, solution as 
for (c), contours from -1750 to 1750, Other details are as for figure 4. 

Dynamo Comparison 
d EA,R,>O E S , R , < O  E A , R , > O  ES,R,<O 
1 3901.11 -4517.63 22473.6 -19754.6 

1.0101 3611.60 -4269.01 15815.0 -16251.8 
1.0526 2881.91 -3570.06 7408.71 -7414.60 
1.1111 2418.47 -3038.56 4736.44 -4736.44 
1.4286 1813.19 -2107.02 2315.27 -2315.25 

2.5 1667.59 -1726.11 1735.09 -1735.08 
10 1659.06 -1660.04 1660.06 -1660.05 
co 1659.05 -1659.04 1659.05 -1659.04 

TABLE 8. Behaviour of 4 (o = 0) with varying d,  for the KR velocity p = 3x, el = 0.03, €2 = 0.04, 
€3 = 0.04. Solutions of both the dynamo and comparison systems are detailed; the convergence of 
the EA eigenvalues for &, > 0 and the E S  eigenvalues for R,,, < 0, as d + co, is shown for each 
system, as is the convergence of the two systems themselves in the same limit. Calculations employed 
truncation level L = 16, and O(h6)  Richardson extrapolation from the eigenvalues obtained for 
N = 50, 100 and 150. 

As required from the d >> 1 limit (2.15), the physical and comparison system solutions 
converge towards each other as d increases; thus the physical E A  and E S  solutions 
for opposite senses of velocity tend towards equal I&[. 

The values of 4 obtained for the physical cases d = 1 and d = m differ by a factor 
of approximately 2.5, and so the insulating boundary clearly exerts a considerable 
influence on dynamo action. Nevertheless the boundary appears to influence E A  and 
E S  solutions approximately equally. Figure 18, which shows the axisymmetric fields 
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FIGURE 15. The axisymmetric field of the marginal stationary E”P,” solutions obtained for p = 3rc, 
€1 = 0.03 with varying €2 = €3, truncation level ( L , N )  = (12,150). (a)  Bd for €2 = €3 = 0.02, 
% = 17380.1, contours from -1.5 to 0. (b )  F4, solution as for (a), contours from -1000 to 1000. (c) 
B4, for €2 = €3 = 0.04, q = 3892.82, contours from -1.5 to 0. ( d )  F4, solution as for (c), contours 
from -350 to 350. (e) for €2 = €3 = 0.08, & = 1654.82, contours from -1.5 to 0. v) F4, solution 
as for (e ) ,  contours from -150 to 150. (g) l34 for cz = c3 = 0.16, & = 798.450, contours from -1.5 
to 0. ( h )  Fd, solution as for (g), contours from -65 to 65. Other details are as for figure 4. 
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FIGURE 16. Relation between solutions with different ~ l / q q .  Two lines show the families of solutions 
with F , / F ~ E ~  = 50 (lower line) and F ~ / Q F ~  = 25 (upper line); distance from the origin along each 
line corresponds to deviation from the Braginsky limit. From point A, with ~ 1 / q q  = 50, one can 
move to a solution with F ~ / E Z F ~  = 25 either by increasing € 2 ~ 3  (to point B) or by decreasing €1 

(point C). Both B and C, lying on the same line, share a similar morphology, although the relative 
strength of their toroidal to poloidal, and axisymmetric to non-axisymmetric, components differ. 

obtained for varying d ,  also shows that the solution morphology is not changed 
beyond recognition. In these two senses then, the boundary condition plays only 
a secondary role in determining the solutions of the dynamo system, allowing the 
approximate eigenvalue symmetry previously observed to be traced to the adjoint 
symmetries elucidated in $2.3. 

For d > 1, the field morphology is considerably simpler, as toroidal flux is free 
to diffuse outside the sphere r d 1, resulting in lower diffusion, lower Q, and 
correspondingly improved numerical convergence. The conclusion of Hutcheson & 
Gubbins (1994), that the presence of a quiescent conducting layer facilitates dynamo 
action, is thus upheld and extended to E S  solutions. 

For the comparison problem the artificial S = 0 boundary condition compounds 
difficulties of dynamo action at low d,  producing convoluted field and high c. The 
resultant poor numerical convergence is evident in the deviations from equality of 
E A  and E S  eigenvalues at the smaller values of d in table 8. A relatively small 
quiescent layer can significantly decrease these difficulties, however; for d = 10/9, 

is significantly smaller, convergence reasonable, and the correspondence between 
E A  and E S  eigenvalues good. For slightly greater d (e.g. d = 10/7), the comparison 
problem proves a passable approximation to the dynamo problem, a result that 
may prove useful for future analytic work. For future numerical work we may also 
note that any method that concentrates the radial representation near the external 
boundary would also help overcome these numerical difficulties. 

The deviations between dynamo and comparison systems can be investigated more 
quantitatively. Proctor (1977b) showed that the difference in eigenvalues must vary 
as O(d-(21+1)), where 1 is the lowest degree of poloidal field present. Thus the EAP," 
solution should produce an O(dP3) change in eigenvalues; an ESP: solution, an 
O ( L ~ - ~ )  deviation. Figure 19 plots the differences between dynamo and comparison 
eigenvalues obtained numerically at high d along with the best-fitting curves of form 
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FIGURE 17. Growth rates, 1, of greatest real part with increasing I&, for each symmetry of solution 
obtained for p = 3n, €1 = 0.03, €2 = €3 = 0.04. Re1 is shown in (a), I m i  (the frequency, w )  in (h).  
The solid line shows the EAP: solution, the long-dashed the ESP:, the short-dashed the E A P f ,  the 
chain-dashed the ESP;. (The E”Pf solution is stationary (w = O).) 

0(d-3) ( E A )  and 0 ( d - 5 )  ( E s  solutions); the excellent fit of the data to the curves 
confirms the well-behaved nature of the problem in the d >> 1 limit. 

4.3. Dynamo systems with inner cores 

The preceding section considered the importance of the outer boundary on dynamo 
action, motivated by the adjoint symmetry anticipated in the limit d + m; an inner 
boundary is also of potential import to planetary dynamos, and so is here investigated. 

An inner core, of radius b < 1, may easily be incorporated into our model, simply 
by rescaling the velocity into the outer region of the sphere and dealing appropriately 
with the new internal boundary. For a conducting core, whose conductivity we take 
for simplicity to equal that of fluid region, we may in fact neglect the boundary 
magnetically, and continue to explicitly solve for B throughout r < 1. Alternatively, 
for stationary solutions, calculations similar to those used for the conducting quiescent 
layer produce the condition 

dS/” 1+1 
-- - S ; t = O ,  r = b. 

dT;“ 1+1 
= 0, __-__ 

dr r dr r 
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FIGURE 18. The axisymmetric field of the marginal E”P,” solutions obtained for p = 37t, €1 = 0.03, 
€2 = €3 = 0.04, with varying d at (L ,N)  = (16,150). (a,b) B+ and F+ for d = 1, = 3892.8. (c,d) 
Bd, F+ for d = 10/9, % = 2417.9. (eJ B+, F+ for d = 10/7, & = 1813.3. ( g , h )  B+, F4 for d = co, 
& = 1659.0. Contours of B+ are from -350 to 350, of F+ from -1.5 to 0; other plot details are as 
for figure 4. 
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FIGURE 19. Differences in between the dynamo and comparison systems, for E A  and E S  solutions, 
with the best-fitting O(d-3 ) (EA)  and O(d-5)(Es)  curves, for p = 371, €1 = 0.03, €2 = €3 = 0.04. E A  
(E') solutions are shown by thin (thick) lines. 

For an insulating core, the correct condition is 

dSy E+1 
T;" = 0, -- - S ; l = O ,  r = b .  

dr r 
(Although an insulating core is of less obvious planetary relevance, it is of interest 
in light of the conclusions of Hollerbach & Jones (1993a), who found that the 
dynamical behaviour of a (conducting) core led to the internal expulsion of toroidal 
flux, a situation better modelled kinematically by an insulator than a conductor. 
The effect of the core's conductivity on dynamo action is also of interest given that 
previous authors (e.g. Zhang & Busse 1989) have for numerical simplicity employed 
insulating cores.) 

The effect of a conducting core on the E A  and E S  solutions located above is given in 
table 9. If the values of & are rescaled to the new length scale, 2 = 1 - b, appropriate 
to the active dynamo region, it can be argued that cores of quite considerable size 
influence dynamo action only slightly. Thus, for b < 0.5, say, the change in dynamo 
efficiency can largely be explained by the simple reduction in the size of the effective 
dynamo region. The morphology of the field varies considerably over this range, 
however, as can be seen from figure 20; even a small inner core significantly modifies 
the flux in the interior, where the field can now only penetrate by diffusion. The 
variation in toroidal field is particularly noticeable. The resultant new flux features 
become more marked as b increases; in the present case they dominate the solution 
for b 2 0.5, the original flux-pattern being overwhelmed. Beyond this point, the 
behaviour becomes more convoluted. It is clear that the solution is then to a large 
extent constrained by the imposed geometry. 

Although the internal morphology can thus be seen to vary considerably, the 
externally visible field changes only slightly, as is seen, for the E A  solution, from 
figure 21. 

For the KR velocity under investigation, the E S  solution morphology adapts more 
easily to the presence of the inner core than does the E A ;  thus for values of b of 
approximately 0.3 or greater, the E S  solution possesses the smaller I&[. Thus it is 
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FIGURE 20. The axisymmetric field of the marginal E”P,” solutions obtained for p = 37c, el = 0.03, 
q = €3 = 0.04, with varying conducting 6, at ( L , N )  = (16,151). (a) B+ for b = 0.1, = 4409.5, 
contours from -1.4 to 0. (b) F+, solution as for (a), contours from -265 to 265. (c) B+ for b = 0.3, 
& = 5986.8, contours from -1.35 to 0. (d) F,, solution as for (c), contours from -155 to 155. (e )  
B ,  for b = 0.5, = 8213.7, contours from -1.3 to 0. v) F,, solution as for (e ) ,  contours from 
-180 to 180. (8) Bb for b = 0.7, = 8723.5, contours from -1.7 to 0. (h)  F,, solution as for (g), 
contours from -200 to 200. Other details are as for figure 4. 



260 G.  R. Sarson and D. Gubbins 

.... 

. .  ..... 

................ . . . ~ ~  .......... ... . . . ... 

FIGURE 21. The radial field on r = 1 for the marginal E”P! solutions obtained for p = 3x, €1  = 0.03, 
€2 = € 3  = 0.04, with varying conducting b, at ( L , N )  = (16,151). (a) B, for b = 0.1, K = 4449.1, 
contours from -3.35 to 3.35. (b)  B, for b = 0.3, &, = 5986.8, contours from -4.35 to 4.35. (c) B, 
for b = 0.5, = 8723.5, contours 
from -5.45 to 5.45. Other details are as for figure 4. 

= 8213.7, contours from -6.35 to 6.35. (d) B, for b = 0.7, 
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b 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 

Conducting 
EA ES 

3901.11 -4517.63 
4463.35 -5116.21 
5153.01 -5747.50 
60 14.52 -6290.37 
7008.09 -6367.43 
8234.97 -6534.55 
8796.70 -6691.97 
8721.10 -7494.48 

Insulating 
EA ES 

3901.11 -4517.63 
4462.65 -5106.33 
5138.83 -5670.83 
5939.85 -6092.55 
6794.86 -6199.73 
7821.45 -6470.34 
8470.81 -7032.71 
8824.30 -9056.34 

TABLE 9. for E A  and E S  soiutions for the KR velocity p = 37r, €1 = 0.03, 6: = €3 = 0.04 with 
varying inner cores b. Both conducting and insulating inner cores are detailed. Calculations employed 
truncation level L = 16, and O(h6)  Richardson extrapolation from the eigenvalues obtained for 
N = 51, 101 and 151. 

not inconceivable that a small inner core such as that in the Earth (where b = 0.35) 
may play a role in parity selection, although it must be remembered that the sign of 
R,,, will be imposed by the hydrodynamics. 

Critical eigenvalues for the KR solutions with an insulating core are also given in 
table 9, for comparison with the values obtained with a conducting core. It can be 
seen that the eigenvalues for the two cases differ only slightly, with the solutions for 
conducting cores being marginally more easily excited for all but the largest b. The 
field morphology changes almost negligibly; the toroidal field is now excluded from 
the inner core, but adapts to this constraint with relative ease. 

Thus the effect of an insulating medium in the core can be seen, at least kine- 
matically, to be slight. This fact might in future be employed to simplify the work 
involved in solving for time-dependent solutions, the insulating core allowing a simple 
matching condition to be adopted, removing the need for a numerical solution in the 
interior. 

Although time-dependent fields might be expected to be more influenced by a core 
than the stationary solutions considered here - since a frequency-dependent skin- 
depth effect may exacerbate the exclusion of flux from the inner core ~ the similar 
nature of solutions obtained with conducting and insulating cores for oscillatory 
solutions obtained for an axisymmetric flow (Sarson 1994), show that this skin-depth 
effect need not be dominant. Its importance may also be to some extent decreased 
dynamically, when the inner core will be free to co-rotate with the magnetic field, a 
situation considered by Hollerbach & Jones (1993a, b). 

5. Conclusions 
The preceding calculations have succeeded in obtaining dynamo action, and agree 

well with the conclusions of previous authors in favouring the production of a 
stationary dipolar (P;EA) field for certain values of the velocity parameters. The 
surface field morphology obtained, essential for relating studies to the geodynamo, 
as considered in Gubbins & Sarson (1994), allows promising comparisons with the 
observed magnetic field, and can to some extent be understood in terms of simple 
flux advection mechanisms. In addition, however, many new solutions, of varying 
spatial and time symmetries have been obtained ~ in particular the P;ES and the 
oscillatory P! solutions are, we believe, the first of their kind - thus allowing a greater 
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understanding of the possibilities of dynamo action, and giving greater constraints 
on the flow responsible for the geodynamo. 

The principal factor controlling the preference of the 3D system to stationary 
or oscillatory instabilities is the meridional circulation, as was also the case for 
the aw-systems investigated by Roberts (1972). For the 3D systems, however, it is 
the effective meridional circulation arising in the asymptotic theory of Braginskii 
(19644, incorporating the azimuthal average of the non-axisymmetric velocity, that 
is important. In the past this feature of the theory appears to have been considered 
simply as a mathematical artifice and consequently neglected. The calculations detailed 
here confirm the validity and importance of this effect; its omission in the am- 
parameterization would lead to misleading results. 

In so-called ‘intermediate’ dynamo models, where the dynamics under simple im- 
posed a- and o-effects are investigated, previous workers have employed rather 
particular distributions of o! (e.g. Braginsky 1978; Braginsky & Roberts 1987), or a 
perhaps inappropriate reinstatement of the a2 mechanism (e.g. Barenghi 1993 ; Holler- 
bach, Barenghi & Jones 1993), to ensure that the stationary solutions appropriate 
to modelling the geodynamo are obtained. The effective meridional circulation high- 
lighted here is however of exactly the form required for this. This term, which emerges 
naturally from the asymptotic theory, may be prescribed with as much justification as 
the a-effect, and it would be more satisfactory to prescribe a non-axisymmetric veloc- 
ity explicitly, and calculate both the a-effect and the effective meridional circulation 
from this using the asymptotic prescriptions. 

The preference of the 3D system for instabilities of dipole or quadrupole ( L A  or 
E s )  symmetry is determined by the sense of the velocity, as previously observed for 
ao-models (e.g. Kono & Roberts 1991); if u favours an E S  instability, --u will favour 
an E A  one. As the momentum equation in the presence of Coriolis and buoyancy 
forces is clearly not invariant under u -+ -u, the symmetry type preferred will thus be 
determined by the governing dynamics. For non-axisymmetric velocity components 
of a given azimuthal wavenumber, the operation u -+ -u can, as pointed out by 
Proctor (1977b), be simply related to a rotation of the coordinate system in (6, an 
operation under which the system must be invariant; it is therefore the sense of the 
mean circulation, and in particular the dominant differential rotation, that will in 
practice determine the symmetry of solution preferentially excited. 

Through variations in the outer boundary condition imposed, the influence of the 
sense of u on the preferred instability symmetry could be traced to the adjoint systems 
introduced in $2.3. The presence of the insulating boundary, whilst destroying the exact 
symmetry between E A  and E S  solutions observed under u 4 -u, does not, at least for 
this velocity, influence the parity selection. Confirming the conclusions of Bullard & 
Gubbins (1977) and Hutcheson & Gubbins (1994), however, it does increase the ohmic 
dissipation produced, making dynamos harder to excite and increasing problems of 
numerical convergence. 

The presence of an inner boundary, either conducting or insulating, had by com- 
parison a relatively slight effect on the ease of dynamo action, at least until the size 
of the imposed inner core altered the geometry of the problem beyond recognition. 
Such an inner core may be expected to play a considerably greater role dynamically, 
however, as recent calculations (Hollerbach & Jones 1995, and references therein) 
show that a correctly coupled conducting inner core can completely change the na- 
ture of solutions obtained, since the absence of advection in the interior allows the 
magnetic field there to change only on the longer diffusion time scale, thus stabilizing 
the system. 
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No positive dynamo action could be obtained for the P t  symmetries, for any 
values of the velocity parameters investigated. This was to be expected in the Bra- 
ginsky regime, where velocities approaching the nearly axisymmetric asymptote were 
considered, Such solutions are, however, to be expected in another regime, with flows 
characterized by e2 = f 3  w 0, el - 0(1), closely related to the tysi flow found by 
Dudley & James (1989) to produce equatorial dipole fields. A brief investigation of 
the KR velocity in this regime did not locate dynamo action (Sarson 1994). These 
investigations were hampered by the numerical resolutions attainable, however, and 
this conclusion may prove a numerical artefact. 

Numerical convergence remains a problem in investigations of dynamo action. 
Cases were obtained where dynamo action appeared to occur at low truncations 
but later proved to be spurious; in other instances low truncations were unable to 
adequately represent a dynamo solution that finer resolution uncovered; in further 
situations the limited numerical resolution attainable was insufficient to allow us to 
investigate values of R, high enough to obtain dynamo action with certainty. For 
investigations in the Braginsky regime, however, a convincing agreement between the 
3D solution and the corresponding asymptotic approximation provides an invaluable 
test on numerical convergence. In addition, the adjoint systems investigated allow a 
further useful test that solutions are being adequately represented at finite truncation 
levels. 

A degree of spatial complexity in the flow, previously thought to be essential for 
dynamo action (e.g. KR), appears not to be critical, flows with a simple single-cell 
structure in radius being capable of producing growing magnetic fields. A certain 
radial complexity assists dynamo action, however, resulting in a smaller & and 
better numerical convergence. Thus it aids numerical investigations in the same way 
that a non-insulating boundary layer does. 

In relating our results to the geodynamo, we conclude that the predominantly 
stationary nature of the observed field can be explained with reference to the effective 
meridional circulation of the fluid flow in the core. The dependence of this feature on 
the strength of the non-axisymmetric convection (via € 2 ~ 3  in our simple model) allows 
variations in the time behaviour of the geodynamo to be explained simply in terms 
of fluctuations in the convective strength, rather than requiring hypothetical shifts in 
the latitude of dominant convection, as Parker (1969) and Levy (1972) propose. 

We may also conclude that the observed dipole nature of the field must be explained 
with reference to the sense of the differential rotation. More dynamical work needs 
to be done on the mechanisms producing this component of flow, to allow further 
insight into the MHD processes occurring in the core. 
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